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Abstract

Shifts in the timing of spring phenology are a central feature of global change research.

Long-term observations of plant phenology have been used to track vegetation responses

to climate variability but are often limited to particular species and locations and may not

represent synoptic patterns. Satellite remote sensing is instead used for continental to

global monitoring. Although numerous methods exist to extract phenological timing, in

particular start-of-spring (SOS), from time series of reflectance data, a comprehensive

intercomparison and interpretation of SOS methods has not been conducted. Here, we

assess 10 SOS methods for North America between 1982 and 2006. The techniques

include consistent inputs from the 8 km Global Inventory Modeling and Mapping

Studies Advanced Very High Resolution Radiometer NDVIg dataset, independent data

for snow cover, soil thaw, lake ice dynamics, spring streamflow timing, over 16 000

individual measurements of ground-based phenology, and two temperature-driven

models of spring phenology. Compared with an ensemble of the 10 SOS methods, we

found that individual methods differed in average day-of-year estimates by � 60 days

and in standard deviation by � 20 days. The ability of the satellite methods to retrieve

SOS estimates was highest in northern latitudes and lowest in arid, tropical, and

Mediterranean ecoregions. The ordinal rank of SOS methods varied geographically, as

did the relationships between SOS estimates and the cryospheric/hydrologic metrics.

Compared with ground observations, SOS estimates were more related to the first leaf

and first flowers expanding phenological stages. We found no evidence for time trends in

spring arrival from ground- or model-based data; using an ensemble estimate from two

methods that were more closely related to ground observations than other methods, SOS
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trends could be detected for only 12% of North America and were divided between

trends towards both earlier and later spring.

Keywords: bloom, budburst, climate change, flower, growing season, land surface phenology, season-

ality
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Introduction

Phenology, the study of the timing of recurring biolo-

gical cycles and their connection to climate, is experien-

cing a renaissance in global change science as it is

providing society with an independent measure on

how ecosystems are responding to climate change (Ba-

deck et al., 2004; Linderholm, 2006; Parmesan, 2006). For

example, recent synthesis studies on vegetation phenol-

ogy are showing a widespread trend towards earlier

arrival of spring across the northern hemisphere, as

measured by the dates of budbreak, flowering, or

partial or full leaf expansion (Chmielewski & Rotzer,

2001; Menzel et al., 2006; Schwartz et al., 2006). Specifi-

cally, long-term phenological data indicate that the date

of spring is advancing by, on average, 1–2 days per

decade but varies depending on study period (Schei-

finger et al., 2002; Schaber & Badeck, 2005).

Decadal trends and interannual variability in vegeta-

tion phenology are important because they affect

carbon, water and energy exchange between the vege-

tation and the atmosphere. Annually integrated net

ecosystem CO2 exchange of deciduous vegetation is

strongly related to length of the carbon uptake period

(Baldocchi et al., 2001): springtime warming advances

phenology, accelerates carbon uptake and reduces the

amount of CO2 in the atmosphere. Springtime advances

in phenology also alter the surface energy balance

and accelerate transpiration (Wilson & Baldocchi,

2001), which humidifies the atmosphere, alters the

rate of growth of the planetary boundary layer and

affects clouds and precipitation (Fitzjarrald et al.,

2001; Schwartz & Crawford, 2001). In some instances,

however, earlier spring growth advances soil water

depletion, enhancing mid-summer drought, thus coun-

teracting higher early spring carbon assimilation (White

& Nemani, 2003; Angert et al., 2005). Climate warming

and earlier spring growth in combination with forest

fuel buildup in the south-western united states also has

resulted in an increasing number of large and severe

wildfires (Westerling et al., 2006).

Methodological advances have accompanied the re-

emergence of vegetation phenology research (Cleland

et al., 2007), with at least five methods now available: (1)

networks observing species-specific plants and plant

communities, often with concurrent climate observa-

tion; (2) phenology modeling; (3) eddy covariance flux

towers; (4) global change experiments; and (5) digital

cameras and remote sensing – the main topic of this

research. Methodologies to estimate phenology from

satellite remote sensing are proliferating yet a univer-

sally accepted definition of spring arrival does not exist.

Within the rubric of the term land surface phenology

(LSP) – here defined as the study of the spatio-temporal

development of the vegetated land surface as revealed

by synoptic spaceborn sensors – terms such as greenup,

leaf-out, green wave, and start-of-spring (SOS) appear

to be interchangeable but in reality may represent

different process or events. Here, we adopt the term

SOS and define it conceptually as a rapid sustained

increase in remotely sensed greenness after the longest

annual period of photosynthetic senescence (SOS has

also been defined as start-of-season; we use ‘spring’ to

distinguish our analysis from fall phenology). Critically,

in addition to radiation absorption by vegetation cano-

pies, LSP includes the aggregate, confounding influence

of atmospheric contamination, cloud cover, snow cover,

soil wetness, and bidirectional viewing effects, There-

fore, LSP must be considered to be related, but not

identical to, plant phenology.

Although efforts have been made to explore differ-

ences between SOS methods (Schwartz et al., 2002),

researchers do not comprehensively understand how

the myriad definitions and methods are related to

ground-based phenology and related processes such

as changes in snow cover, soil thaw, ice, and hydrology.

A survey of late 20th and early 21st century phenology

literature for North America highlights the conflicting

results obtained from satellite-based methods. Re-

searchers have found scattered trends towards earlier

and later SOS (Reed, 2006), earlier SOS everywhere

except the southeast (Zhang et al., 2007), spring green-

ing only in the southeast (Xiao & Moody, 2005), no

overall continental trend in spring (Piao et al., 2007), a

strong continental trend toward earlier spring (Zhou

et al., 2001), or rare positive trends in June–August

greenness in the high arctic (Goetz et al., 2005) but

almost no trends in spring (Bunn & Goetz, 2006). While

we recognize that differing results are likely influenced

by variable study periods, satellite platform and atmo-

spheric corrections, study area, compositing schemes,

and spatial resolution, we submit that a central and
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largely unaddressed uncertainty is the algorithm se-

lected to extract SOS estimates.

Here, we use 10 methods ranging from simple em-

pirical approaches to more complex mathematical mod-

els to estimate SOS for North America using a

consistently processed remote sensing dataset. We then

conducted a four-part analysis: (1) intercomparison of

the SOS estimates among methods; (2) interpretation of

SOS estimates with cryospheric and hydrologic indica-

tors of interannual variability; (3) assessment of SOS

estimates using ground measured phenology and tem-

perature driven phenology models; and (4) an ensemble

estimate of 1982–2006 trends in SOS for North Amer-

ican ecoregions based on a selection of SOS methods

most consistent with ground data.

Materials and methods

Our overall approach was to compare SOS, cryo-

spheric/hydrologic metrics, and measured and mod-

eled plant phenology, principally at the level of whole

ecoregions but sometimes for specific pixels or for all

of North America. Here, we present an encapsulated

methodology section; full details are available in

Appendix A. We used the ecoregion concept to reduce

the level of complexity and to simplify the presentation

of results (this approach will obscure within-ecoregion

differences related to latitude, elevation, or C3 vs. C4

species – all of which would be suitable for subsequent

intercomparison analyses). For our ecoregion map, we

used the level 1 (for most analyses) and level 3 (for

detailed trend analysis) US Environmental Protection

Agency Ecoregions of North America (http://www.

epa.gov/wed/pages/ecoregions/na_eco.htm; there are

15 level 1 and 182 level 3 ecoregions). All analyses were

native to or reprojected and resampled to the 8 km

Albers Conic Equal Area projection of the remotely

sensed data.

When conducting our interpretation and assessment,

we used Spearman’s correlations or reduced major axis

correlation. With numerous statistical tests, the prob-

ability of a Type I error is high, but standard Bonferro-

ni’s corrections often result in unacceptably high Type II

error rates. Other methods for multiple comparison

error correction exist but no method is universally

accepted and each will promote either Type I or Type

II errors. As our central intent is to establish the relative

ordinal relationship among SOS estimates, cryospheric/

hydrologic metrics, and measured and modeled phe-

nology, formal rejection or acceptance of the null hy-

pothesis is not critical and we here report correlations as

being greater than or less than the standard 0.05 cutoff

without specific claims of statistical significance.

Satellite SOS estimates

We estimated 1982–2006 SOS with the 8 km (64 km2

pixels) 15-day composited 1982–2006 normalized dif-

ference vegetation index (NDVI) records from the Glo-

bal Inventory Modeling and Mapping Studies

Advanced Very High Resolution Radiometer NDVIg

dataset (Pinzon et al., 2005). NDVI is a widely used

proxy indicator of vegetation canopy function and is

related to the absorption of photosynthetically active

radiation by plant canopies (Asrar et al., 1984). Other

processing schemes exist (Smith et al., 1997; Kogan &

Zhu, 2001; Pedelty et al., 2007) but none is free of

criticism and NDVIg is widely used for trend analysis.

Finer resolution datasets are also available but either

lack within- and among-sensor corrections or cover

shorter durations (e.g. the Moderate Resolution Ima-

ging Spectroradiometer, Raytheon Space and Airborne

Systems, El Segundo, CA, USA). Using NDVIg data, we

estimated SOS for North America using 10 methods

from four categories (Table 1, Appendix A). All meth-

ods also predict the end-of-season day-of-year (DOY)

but here we consider only SOS. For SOS methods and

related analyses, we refer to the combination of a single

pixel and a single year as a pixel-year.

Cryospheric/hydrologic comparisons

We assembled data for snow cover, soil thaw, lake ice

dynamics, and spring hydrology (see Appendix A for

full details). Each dataset had variable temporal cover-

age, thus limiting the range of SOS analyses. Briefly, we

used: the date of initial snow melt determined from

multiple sensors; microwave-detected dates of soil

thaw; lake ice breakup from gridded visual observa-

tions; and spring snowmelt onset date and the center of

flow timing from streamflow records (these hydrologic

metrics are designed to track the effects of temperature

and should not be taken to solely represent moisture

availability). For comparisons between these ancillary

datasets and SOS, we calculated ecoregion annual

averages and used Spearman’s rank correlation coeffi-

cient, which relates the ordinal rankings of vectors with-

out distributional assumptions, i.e. we seek to compare

early (late) SOS vs., for example, early (late) snowmelt.

Measured and modeled plant phenology comparisons

We used 16 401 records of ground-measured plant

phenology from 19 networks or sites covering most of

North America (Table 2, Fig. 1). For the purposes of this

research, the plant phenology data represent both a

tremendously rich data source but also extensive pro-

blems including at least five central challenges: (1)
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Table 1 Start-of-spring methods: acronym, full name, and estimation category and brief algorithm description (see Appendix A for

full details)

Method Full name Algorithm: SOS estimate

Quadratic Quadratic Conceptual-mathematical: first composite period of growing degree

accumulation best fitting the observed NDVI time series

NDVI 0.2 NDVI 0.2 Global threshold: NDVI exceeds 0.2

NDVI 0.3 NDVI 0.3 Global threshold: NDVI exceeds 0.3

DMA Delayed Moving Average Conceptual-mathematical: smoothed NDVI exceeds expected value of

near-term historical NDVI

HANTS-FFT Harmonic Analyses of NDVI Time-

Series – Fast Fourier Transform

Conceptual-mathematical: maximum increase on Fourier

approximation of NDVI

Timesat Timesat Conceptual-mathematical: high amplitude divergence from a multiple-

model NDVI fit

Midpointpixel Midpointpixel Local threshold: NDVI exceeds locally tuned threshold; run for every

pixel

PAT Percent-Above-Threshold Local threshold: NDVI exceeds locally tuned threshold; run for the

group behavior of all pixels within an ecoregion

Gaussian Gaussian Hybrid: average date when Gaussian fit of NDVI exceeds three global

thresholds

Midpointcluster Midpointcluster Local threshold: NDVI exceeds locally tuned threshold; run for time

series aggregated to a cluster level

Table 2 List of phenological observation sites and/or networks

Site/network name Duration Sites Sp Stages n

Arctic LTER* 1996 1 8 AMB FF FL 19

Chequemegon Ecosystem Atmosphere Study 1999–2006 2 2 FL FE 32

GLOBE 1998–2006 155 71 LB 386

Harvard Forest LTER 1990–2006 1 17 LB 75 530

Howland Research Forest 1990–2006 1 2 LB 28

Hubbard Brook Experimental Forest*w 1989–2005 5 3 FL LB 510

Konza Prairie LTER*w 1982–1987 1 31 FF LB 332

Life Cycles 2001–2004 11 44 AMB FF 47

Long Lake Conservation Center 1998–2006 1 139 AMB FB FF 167

Niwot Ridge LTER*w 1984–1992 1 3 FB FF FI LB 74

North American Lilac Network 1982–2003 392 2 FF FL 5072

Oak Ridge National Laboratory DAAC 1984 2 3 FL 6

OSU Phenology Gardens 2005–2006 28 46 AMB FF 1255

Plantwatch 1991 401 33 FB FF FL 5041

Prairie Wetlands Learning Center 1999–2006 1 80 FF 112

Rocky Mountain Biological Laboratory 1982–2006 1 2 FF 46

Sevilleta LTER Site*w 2000–2006 1 217 FF FL 1795

Shortgrass Steppe LTER*w 1995–2004 1 22 FB FF FL 429

Toolik Snowfence Experiment 1995–2002 2 20 FB FF FL 520

*Where ‘first’ events such as first leaf or first bloom were measured for multiple plants of the same species at the same location and

where observations were taken every few days, we used the earliest observation.

wFor sites in which exact geographic coordinates were not present, we averaged observations of the same species.

LTER, long term ecological research; GLOBE, global observations to benefit the environment; DAAC, distributed active archive

center; OSU, Oklahoma State University; Sp, number of species; n, number of observations. Records and metadata are available from

the corresponding author. Phenological stages are: AMB, anthesis/middle bloom; FB, first flower bud; FF, first flowers expanding;

FI, first inflorescence; FL, first leaf; FE, full leaf expansion; LB, leaf budburst or budbreak; 75, 75% of full leaf expansion (used only at

Harvard Forest and based on the expert opinion of the observer). LB is the first appearance of leaves from burst buds and is followed

by FL, the initial expansion of leaves from buds. Metadata for most sites/networks is available at http://www.uwm.edu/Dept/

Geography/npn/.
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variable temporal and spatial coverage within and

among networks; (2) species monitored may or may

not represent general landscape phenology – the classi-

cal point vs. pixel problem in remote sensing assess-

ments in which a single point observation may or may

not represent the overall pixel characteristics; (3) differ-

ent measurement protocols among networks; (4) un-

known measurement accuracy and errors in data entry;

(5) different phenological stages measured (e.g. leaf vs.

bloom phenology and differences in how each stage is

defined). In order to maximize data usage while mini-

mizing problems, we conducted four separate analyses

as follows.

First, we established the overall relationship between

plant phenological events and SOS by separating the

plant phenology data into the six phenological events

(leaf budburst, first leaf, etc. Table 2) and extracting all

the satellite SOS estimates for the corresponding pixel-

year. We then constructed boxplots for each phenologi-

cal event and the temporally and spatially co-located

SOS estimates.

Second, we assessed the ability of SOS methods to

represent individual, detailed plant phenology observa-

tions at specific locations. We used daily records of the

fraction of photosynthetically active radiation absorbed

by plant canopies (FPAR, scaled from 0 at the seasonal

minimum to 1 at the seasonal maximum) recorded

at the Bartlett Experimental Forest (4413052.700N

7111701700W) using above and below-canopy quantum

sensors covering � 2000 m2 (Jenkins et al., 2007). Here,

FPAR represents a continuous metric of canopy phe-

nological development. We extracted corresponding

pixel-year SOS values and compared the satellite DOY

estimates against the measured FPAR curves.

Also within the category of specific location com-

parisons, we extracted all unique individual species

No. of species

1 2 10 20 100 200

Duration (year)

Fig. 1 Ground phenology records. Boxes show: location, center of box; number of species, box size; number of years observed at each

site over the 1982–2006 study period, box color.
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records of at least 10 years in duration for a particular

phenological event (Table 2). For extractions with more

than one site present in a given year, we calculated

within-pixel averages and then a time series of annual

averages. Next, we calculated correlations between the

multi-year plant phenology records and the corre-

sponding SOS pixel-years.

Third, we identified all 8 km pixel-years containing at

least two observations of any species and phenological

event. For all such pixel-years, we calculated the range

and the 90% confidence interval (CI) as:

CI ¼ X � t
sffiffiffi
n
p
� �

; ð3Þ

where for the plant phenology observations, X is the

mean, t is the critical value from Student’s t distribution

for n�1 degrees of freedom, s is the sample standard

deviation, and n is the number of observations. We

categorized the corresponding SOS estimates as before

the minimum or CI, within the range or CI, or after the

maximum or CI.

Fourth, we initially attempted to construct 1982–2006

ecoregion-specific plant phenology averages but rea-

lized that sparse coverage in many ecoregions and

variable species demographics made such an approach

impracticable. Instead, we calculated annual average

plant phenology for the entire study area. While we

used all phenological events and species, we attempted

to minimize observational or data entry errors by re-

stricting the analysis, as above, to include only pixel-

years with at least two observations and averaging

multiple observations within a pixel-year. Owing to

limited data availability, we restricted this analysis to

the 1982–1999 record. For phenological time series with

overlapping records for the same species, techniques

exist to reduce measurement uncertainty (Linkosalo

et al., 1996); most of our data did not meet these criteria

and we consequently did not smooth or filter the

ground data. Future studies, though, should consider

these techniques when appropriate. We then compared

the plant phenology time series against SOS time series

constructed from the corresponding pixel-years (using

reduced major axis Type II regression, as there are

uncertainties in both the x and y variables).

As a spatially and temporally continuous adjunct to

the sparse plant-based measurements, we simulated the

arrival of spring with the Spring Indices (SI) (Schwartz,

1997, 2003) and Dleaf-out (Baldocchi et al., 2005) models

(see Appendix A for details). We predicted 1982–2003

first leaf and first bloom with SI and the date of initial

overstory leafing with Dleaf-out. As both models were

developed using data from temperate deciduous spe-

cies, we restricted the model comparison with the East-

ern Temperate Forest ecoregion.

Trend estimates

Based on results of the following interpretation and

assessment, we selected the SOS methods most consis-

tent with the interannual variability in cryospheric/

hydrologic metrics and ground- and model-based phe-

nology and calculated correlations (year as explanatory

variable, SOS as multiple response y-vectors fitted

simultaneously and for individual methods).

Results

SOS intercomparison

SOS methods differed in average estimated DOY, stan-

dard deviation, and ability to retrieve SOS estimates

(Figs 2–4). As a 1982–2006 average, ensemble SOS

estimates appeared to match expectations, with an early

to late progression from southern to northern North

America and latest SOS in the high arctic (Fig. 2, note

that while the ecoregion approach has the benefit of

simplifying a complex analysis, it tends to minimize the

appearance of within-ecoregion variability, that is a

strong ‘greenwave’ is present in the Eastern Temperate

Forest but not visually apparent in our maps). Relative

to the ensemble, though, individual methods often

differed among ecoregions: Quadratic SOS was early

in the West and late in the North while DMA exhibited

nearly opposite patterns. Some methods were either

consistently early (NDVI 0.2 and Midpointcluster) or

consistently late (HANTS-FFT and PAT) but in most

cases, methods exhibited both early and late anomalies,

often of up to � 60 days. Timesat most resembled the

ensemble of model SOS estimates. Note that this com-

parison does not establish the ‘correctness’ of any one

method, only the relative differences in timing.

The variability of SOS estimates, as measured by the

ensemble SOS 1982–2006 standard deviation, was low

in high latitude snow-dominated systems, high in the

North American Desert ecoregion, and highest in Med-

iterranean California (Fig. 3). For individual methods,

standard deviation anomalies calculated across years

(Fig. 3) were inconsistent among ecoregions and meth-

ods: Quadratic, NDVI 0.2, and NDVI 0.3 were mini-

mally variable in the West and more variable in the

North with DMA again exhibiting opposite patterns.

HANTS-FFT and Midpointpixel were more consistently

highly variable while PAT and Gaussian were more

stable. As for average DOY, Timesat had the least SOS

DOY variability anomalies compared with the ensemble

of model SOS estimates. For most methods, Mediterra-

nean California was usually either maximally or mini-

mally variable.
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Average SOS (DOY)

80 90 101 112 123 134 145

Quadratic

NDVI 0.2 NDVI 0.3 DMA

HANTS-FFT Timesat Midpointpixel

PAT Gaussian Midpointcluster

Anomaly (days)

–60 –40 –20 0 20 40 60

Fig. 2 Ensemble satellite-derived SOS averaged by ecoregion and over the 1982–2006 record (upper left panel, ecoregions visible as

color blocks). Remaining panels show the SOS anomaly between individual methods and the ensemble, thus indicating locations in

which individual SOS methods are earlier or later than the ensemble.
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SOS estimates were retrievable (where a retrieval

refers to a successful estimation of SOS – failures occur

due to method-specific treatment of missing data,

screening, etc.) by all methods in all years only in the

Hudson Plain ecoregion (Fig. 4). Retrievals averaged

only 7 years in the Arctic Cordillera and were also low

  

SOS standard deviation (days)

10 18 26 35 43 51 60

 Quadratic

 NDVI 0.2  NDVI 0.3  DMA

 HANTS-FFT  Timesat  Midpointpixel

 PAT  Gaussian  Midpointcluster

Anomaly (days)

–20 –13 –6 0 6 13 20

Fig. 3 Ensemble 1982–2006 SOS standard deviation (upper left panel, ecoregions visible as color blocks). Remaining panels show the

SOS standard deviation anomaly between individual methods and the ensemble, thus indicating locations in which individual SOS

methods were more or less variable than the ensemble.
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7 15 17 18 19 20

Years

21 22 24 25

Quadratic

NDVI 0.2 NDVI 0.3 DMA

HANTS-FFT Timesat Midpointpixel

PAT Gaussian Midpointcluster

Anomaly (years)

–10 –6 –3 0 3 6 10

Fig. 4 Ensemble SOS retrieval rate (upper left panel, maximum of 25, ecoregions visible as color blocks). Low values indicate frequent

failures to retrieve SOS estimates. Remaining panels show the retrieval rate anomaly between individual methods and the ensemble,

thus indicating locations in which individual SOS methods were more or less able to retrieve SOS estimates.
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in Tropical Wet Forests (15 years), Mediterranean Cali-

fornia (17 years), and North American Deserts (18

years). Retrieval rates were highest in forested ecore-

gions with strong annual snow cycles. Among methods,

DMA, HANTS-FFT, Timesat, Midpointpixel, PAT and

Midpointcluster were consistently better able to retrieve

SOS estimates while all other methods had lower re-

trieval rates.

SOS methods varied in their ordinal ranking across

latitude such that a method consistently early at high

latitudes, such as DMA, could become a late method at

low latitudes (Fig. 5). Of all the methods, only Timesat

and Midpointcluster tended to maintain approxi-

mately the same ordinal ranking. As an ensemble,

the latitudinal average showed late SOS at both low

and high latitudes and earliest SOS at about 401. Varia-

bility was high above 701 and below 301 and extreme

below 201.

Assessment of annual time series and long-term

behavior supports other findings of inconsistent SOS

behavior among methods and ecoregion (Figs 6 and 7).

The DMA was early and maximally stable in high

latitude ecoregions but often late and dynamic in south-

ern ecoregions (compare top and bottom rows of Figs 6

and 7). Among-method variability increased with both

aridity (North American Deserts, Southern Semi-arid

Highlands) and humidity (Tropical Wet Forests). Con-

sistent with other results, within- and among-method

variability was highest for Mediterranean California

(Fig. 7).

SOS interpretation with cryospheric/hydrologic metrics

Correlations showed that cryospheric/hydrologic me-

trics were related to SOS retrievals but that the magni-

tude and location varied by ecoregion and SOS method

(Table 3). Overall, comparisons of cryospheric dynamics

were related to SOS while hydrologic dynamics were

not. Of the five ecoregions with consistent annual snow

cycles, only the Hudson Plain ecoregion had correla-

tions with Po0.05 between the date of initial snowmelt

and all SOS methods. Correlations were next highest in

Northern Forests (mean of 0.49 across SOS methods).

Among methods, PAT stood out as being minimally

related to initial snow melt. SSM/I soil thaw compar-

isons were possible in nine ecoregions (Table 3). Here,

correlations were high in two northern latitude forested

ecoregions (Taiga and Hudson Plain) but also in Tun-

dra. Outside of the high latitude ecoregions, P was

40.05 (two exceptions in Marine West Coast Forest)

and were negative in eight out of 10 cases in the Great

Plains. As for initial snowmelt and soil thaw, dates of

lake ice breakup were related to SOS methods in the

colder ecoregion (Po0.05 in Northern Forests, except

HANTS-FFT) and less so in warmer ecoregions. In

contrast to the cryospheric comparisons, the correla-

tions of spring snowmelt onset date and the center of

flow timing vs. SOS rarely had Po0.05 and were often

negative. In the Great Plains, however, center of flow

timing was significant and positive for six out of 10 SOS

methods.

SOS assessment with plant phenology

We found that while no SOS method exhibited uni-

formly exceptional performance, the HANTS-FFT and

Midpointpixel methods were consistently more related

to measured and modeled plant phenology than were

other methods. Boxplots of the six phenological events

showed two central patterns (Fig. 8). First, the median

HANTS-FFT and Midpointpixel were usually closest to

the median of the spatially and temporally collocated
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Fig. 5 Average start-of-spring (SOS) calculated by latitude (left

panel) and shown as the ensemble mean and standard deviation

(right panel).
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measured phenology. Second, when compared across

the phenological events, SOS methods were most simi-

lar in timing to first leaf such that interquartile ranges

overlapped between measured phenology and seven of

eight SOS methods (Gaussian and PAT were executed at

the ecoregion level and are thus not comparable to

ground locations).

When compared against specific measured phenol-

ogy records, HANTS-FFT and Midpointpixel again

slightly outperformed other methods, but the strength

of observed relationships was low (Figs 9 and 10). At

the Bartlett Experimental Forest, SOS from the NDVI 0.2

and 0.3 methods was unrelated to the timing of in-

creases in FPAR. In 2004, HANTS-FFT, Timesat, and

Midpointpixel SOS occurred within the measured in-

creases in FPAR, but in 2005 and 2006 only HANTS-

FFT and Midpointpixel SOS were remotely within the

FPAR increases. Results between HANTS-FFT and Mid-
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pointpixel were inconsistent, with HANTS-FFT being

earlier in 2004 and later in 2005 and 2006, while Mid-

pointpixel and Timesat had fairly consistent differences.

After screening data to include only time series with

at least 10 years of data, we were able to assess 50

correlations between point-based measured phenology

and pixel-based SOS (Fig. 10). P was rarely o0.05 (five

out of 50 correlations for Quadratic and Midpointpixel,

10 out of 50 for HANTS-FFT, fewer for other methods).

Averaged across the 50 time series, the highest mean

correlations were for Midpointpixel (0.35) and HANTS-

FFT (0.33). Discounting NDVI 0.2 and NDVI 0.3, which

were plagued by missing data, HANTS-FFT and Mid-

pointpixel also had the fewest number of negative corre-

lations (two) among the SOS methods. The highest

correlations for any comparisons were at the Rocky

Mountain Biological Laboratory, where results had

Po0.05 for seven of eight SOS methods.

HANTS-FFT and Midpointpixel had the highest per-

centage of SOS estimates within the range and CIs of

measured plant phenology for pixel-years with at least

two unique plant observations (Fig. 11). For all SOS

methods, estimates later than observed phenology CIs

were rare (usually o10%) and SOS estimates within the

range of ground observed phenology never exceeded

40%. With the less stringent 90% CI comparison, Quad-
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ratic, NDVI 0.2, NDVI 0.3, DMA, Timesat, and Mid-

pointcluster had nearly half or more of SOS estimates

before the observed CI. Only HANTS-FFT and Mid-

pointpixel had more than 60% of SOS estimates within

the observed CIs (66% and 69%).

In comparisons against the 1982–1999 annual dates of

ground-measured spring arrival (all stages, Table 2),

only HANTS-FFT and Midpointpixel had the desired

combination of high R2, a low bias, and a reduced major

axis regression slope close to 1 (Fig. 12). Timesat and

Midpointcluster had high R2 and consistently large biases

towards early SOS estimates. All methods besides

HANTS-FFT and Midpointpixel had offsets larger than

3 weeks and only Midpointpixel had bias o1 week.

NDVI 0.2 and NDVI 0.3 had R2 close to zero. Expressed

as time series plots, Midpointpixel tracked the ground-

measured phenology with low bias but some evidence

of excessive interannual variability in the mid 1990s

(Fig. 12). HANTS-FFT was more biased towards earlier

predictions but had interannual variability more con-

sistent with ground-measured phenology.

For the Eastern Temperate Forest comparisons of

modeled plant phenology vs. satellite estimates, SOS

was related (Po0.05) to SI first bloom for six of 10

DMA
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Fig. 9 SOS estimates for the Bartlett Experimental Forest. Black

sigmoidal curve shows the site-measured FPAR on a relative

scale (0 5 annual minimum; 1 5 annual maximum). Vertical lines

show the SOS estimate from individual methods. SOS estimates

for NDVI 0.2, and NDVI 0.3 methods were always earlier than

DOY 80 and are not shown; Quadratic was earlier than DOY 80

except in 2006 when it overlapped with DMA and is thus not

drawn; PAT and Gaussian methods are not shown as they were

implemented at the ecoregion, not pixel, level. Short, thick black

line shows date of soil thaw at 5 cm depth.
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Fig. 8 The relationship between ground-measured phenologi-

cal stage (panel headings) and SOS estimates. Boxplots: black
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lines, minimum and maximum. Dashed lines show the upper

and lower quartile of the ground data. Note that the geographic

and temporal coverage of the phenological stages is variable, i.e.

the boxplots are not a comparison of SOS vs. ground data at the

same location and times and should be taken as an approximate

indication of the relative timing of SOS vs. ground phenology:

SOS is almost always earlier, often by several weeks.
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methods with an average value of 0.41 (Table 4). SI first

bloom correlations were highest for HANTS-FFT, the

three conceptually linked methods (Midpointpixel, Mid-

pointcluster, and PAT), and NDVI 0.3. SI first leaf was

related (Po0.05) only to NDVI 0.2 while Dleaf-out was

related (at Po0.05) to NDVI 0.2 and NDVI 0.3. We

graphically present results for the HANTS-FFT and Mid-

pointpixel methods selected as most consistent with these

and the preceding ground phenology data (Fig. 13). As

for the comparison with measured plant phenology,

Midpointpixel was consistent with the absolute dates of

both the SI first bloom and Dleaf-out models while

HANTS-FFT was slightly biased towards early estimates.

Modeled SI first leaf was approximately 1 month earlier.

Trends

Trends in spring arrival were insignificant for both: (1)

measured ground phenology, HANTS-FFT, and Mid-

pointpixel for North America from 1982 to 1999 (Fig. 12);

and (2) SI first leaf and first bloom, Dleaf-out, HANTS-

FFT, and Midpointpixel for the US Eastern Temperate

Forest from 1982 to 2003 (Fig. 13). Assessed at a more

detailed level for the 182 level 3 ecoregions (Supporting

Information, Figure S1), trends existed (Po0.05) for 30

of 182 ecoregions in HANTS-FFT (20 towards earlier

SOS and 10 towards later SOS) and for 24 of 182

ecoregions in Midpointpixel (15 towards earlier SOS

and nine towards later SOS). Only five ecoregions had

Po0.05 for trends in both methods (two for earlier SOS

and three for later SOS). When using HANTS-FFT and

Midpointpixel as simultaneous y-vectors, however, 30

ecoregions had Po0.05 for trends (Fig. 14). A total of

12% of land area had a trend with Po0.05; earlier trends

(7%) slightly exceeding later trends (5%).

Discussion

Our results indicate that given NDVI data with identical

duration, satellite correction scheme, geographic region,

compositing scheme, and spatial resolution, SOS esti-

mates differed in terms of average DOY by more than 1
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month (Fig. 2), variability by more than 2 weeks (Fig. 3),

retrieval ability by more than one-third (Fig. 4), and

ordinal ranking by latitude (Fig. 5) and ecoregion (Figs 6

and 7). Other work has noted that differences exist

among SOS methods (Reed et al., 2003) and ecoregions

(Bradley & Mustard, 2008), but an expectation, or

perhaps a hope, has existed in the remote sensing

community that SOS methods may have consistent

ordinal behavior and may simply be detecting different

portions of the annual vegetation phenological devel-

opmental cycle. We do not find evidence to support this

supposition. Independent of interpretive and assess-

ment data, such an intercomparison of SOS methods

would have no rational basis for selecting one method

over another method.

When taken in the context of interpretation with

cryospheric/hydrologic metrics and assessment with

plant phenology observations and models, we believe

that our intercomparison may be a useful way of

identifying the strengths and weaknesses of particular

methods and SOS approaches in general. First, we

suggest that methods based on global thresholds (in-

cluding the hybrid Gaussian method) be abandoned for

continental to global applications. The NDVI 0.2 and

NDVI 0.3 methods – based on NDVI exceeding a

geographically constant threshold – had excessively

low retrieval rates (Figs 4 and 10, usually because

annual NDVI did not fall below the threshold) and

essentially no relationship with measured patterns of

interannual phenology variation (Fig. 12). The Gaussian

method, which relies on a range of absolute thresholds,

had similarly large failure rates for much of North

America (Fig. 4). Limited cases of high correlations

suggest, i.e. for cryospheric comparisons (Table 3) or

Dleaf-out (Table 4), that absolute thresholds may be

appropriate for geographically limited application in

specific ecosystem; such ability, however, is more than

offset by inapplicability over much of North America

for the global threshold or hybrid methods.

Second, differences in the implementation of a related

method may produce quite different results, as in the

case of Midpointpixel and Midpointcluster. We executed
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Fig. 12 Comparison of 1982–1999 ground observed phenology and SOS (post-1999 data not used due to very limited ground data

availability). Analysis is for all pixel-years containing at least two ground observations of any species and any phenological stage and

only for pixel-years present for all SOS methods. Ground data were first averaged to pixel-year and then for all of North America. Small
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Correlations showed no trends in SOS or ground phenology (P40.05). Analysis conducted only for those pixels present for all SOS
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Midpointpixel for individual pixels and used a spline to

fit sub-daily time steps and a detailed removal of

undesirable time series; for Midpointcluster, we used a

regionalization concept, measures of uncertainty

around the threshold, and a 15-day time step (see

Appendix A). When retrieved SOS is regressed on

ground observations, both methods had similar R2

and slope but Midpointcluster had a bias of about 1T
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Fig. 13 1982–2003 comparison of SOS estimates and modeled

spring phenology. Models (shown by solid lines) are first bloom

and first leaf from the Spring Indices models based on clonal lilac

and honeysuckly phenology and Dleaf-out based on the date at

which ecosystems become net carbon sinks, as measured by

eddy covariance. Data are shown for the Eastern Temperate

Forest ecoregion within the conterminous United States (area

covered by meteorological inputs required for models). See Table

3 for statistics for all SOS methods. Note that curves for HANTS-

FFT and Midpointpixel represent a different study area and

duration than the curves shown in Fig. 12.
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Fig. 14 Location of trends in 1982 to 2006 SOS with Po0.05

calculated using the HANTS-FFT and Midpointpixel methods.
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month, thus highlighting the importance of implemen-

tation details on SOS results (Fig. 12).

Third, SOS methods were frequently incapable of

retrieving estimates for desert and tropical ecoregions

or ecoregions in which the initiation of growth spans

the start of the calendar year (Fig. 4). In these areas,

when retrievals were obtained, the variance among

methods was high (Figs 6 and 7). In addition, few

independent data on cryospheric/hydrologic metrics

were available for desert or tropical system. SOS for

Mediterranean California, an ecoregion with a pro-

nounced and regular wet and dry season, was incon-

sistently estimated (Figs 2, 3, 6 and 7). The switch from

dry to wet occurs around the end of December to early

January, and the SOS methods’ variable treatment of

calendar years vs. a continual time series likely influ-

enced these results. Whenever possible, we recommend

the extraction of SOS estimates from continual time

series.

Fourth, we have established that for level 1 ecoregions,

SOS estimates are related to cryospheric dynamics, espe-

cially in the colder and snowier ecoregions, but less so to

hydrologic dynamics (Table 3). Our results support

the contention that for evergreen forested ecoregions,

the annual cycle from near-total snow cover to a mature

canopy provides a distinct and detectable NDVI cycle,

arguing for further development of techniques de-

signed to extract a pure vegetation phenology cycle

(Delbart et al., 2005).

The spring snowmelt onset date is designed to be a

proxy indicator of when temperatures rise above freez-

ing and stay there. It is likely that for Northwestern

Forested Mountains and Marine West Coast Forests, the

snowmelt metric is too early to track spring phenologi-

cal development and thus high correlation would be

unexpected. In ecoregions with spatially variable snow-

melt inputs and/or where a snowmelt pulse does not

persistently dominate streamflow, short-term precipita-

tion variability and timing becomes more influential.

Thus, in the North American Deserts, where all correla-

tions were positive but had P40.05, we speculate that

phenology is likely to be related to snowmelt timing,

unimodal and bimodal precipitation distribution, and

moisture availability, and that the low correlations may

be related to persistently low SOS retrieval rates (Fig. 4).

For the center of flow timing, the low correlations in

forested systems may again reflect the wrong event for

comparisons to spring phenology or a strong signal

from watersheds with the most snow (usually highest

elevation) rather than the most area. In the southern

Great Plains, where water limits can be important and

many streamflow records are not dominated by a un-

imodal snowmelt pulse, the timing of water delivery

may influence interannual phenological timing, leading

to correlations with Po0.05 for some SOS methods

(Table 3). It is possible that different hydrologic mea-

sures tuned towards different stages of the hydrograph

could be more related to SOS; we recommend that

further research explore this possibility.

Fifth, based on a suite of information (Figs 8, 9, 11 and

12), we have established that in most cases, SOS esti-

mates occur before measured phenological events. Even

in the case where SOS estimates most overlapped with

ground observations (first leaf, Fig. 8), satellite dates

were usually earlier than ground dates. While the

consistent SOS vs. ground measurement bias may be

caused by SOS detections being more related to snow

dynamics (Table 3; see Fig. 10 for high correlations at

Rocky Mountain Biological Laboratory, a site with large

NDVI amplitude from snow cover to mature conifer

forest) and/or ground networks being biased towards

species with relatively late phenologies, our results

suggest that observations of first leaf may be most

useful for future assessment of SOS methods.

Sixth, although we have attempted to minimize the

difficulties inherent in an extremely diverse ground

phenology dataset (Fig. 1), we acknowledge that the

ground data were not collected with an explicit purpose

of satellite assessment; our analysis is thus subject to

classical point-vs.-pixel comparison errors. In essence,

without remote sensing capable of resolving individual

crowns or more detailed sampling schemes, it is not

known whether or not the recorded species reflect the

overall phenological development of an entire 8 km

pixel. While these caveats represent a potentially im-

portant source of variation generating unknown uncer-

tainty, our overall results suggest that, in comparison

with ground data, the HANTS-FFT and Midpointpixel

methods have: about 65% acceptable SOS retrievals

(Fig. 11), correlations that are 40.6, low offsets or bias,

and regression slope near 1. For implementation pur-

poses, we note that some methods require complete

time series and are best suited for research purposes

(i.e. HANTS-FFT which requires data extending well

past extracted SOS dates) while others, such as PAT

(which is strongly related to Midpointpixel above about

351 and is simple to implement, Fig. 5), are optimized

for real-time implementation

Finally, evidence from measured (Fig. 12) and mod-

eled (Fig. 13) phenology supports our findings of very

limited SOS trends towards earlier spring arrival (Fig.

14), which are broadly consistent with some satellite

results (Reed et al., 2003) and opposite others (Zhang

et al., 2007). In our two-way comparison of independent

trends estimated between the HANTS-FFT and Mid-

pointpixel methods, we found numerous ecoregions

with trends towards both earlier and later SOS

(Po0.05), but the locations differed and only five of
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182 level 3 ecoregions had Po0.05 in both methods.

However, for all cases except one, when one method

had a Po0.05, the sign from the other method was the

same, suggesting a measure of consistency that is

supported by the 30 ecoregions with Po0.05 when

using the ensemble approach (Fig. 14). We therefore

submit that an ensemble approach of multiple SOS

methods may be more powerful for trend estimation

than use of single methods alone.

Ground-based observations of cryospheric/hydrolo-

gic metrics and plant phenology over longer time

periods have tended to show trends consistent with

climate warming. For example, trends toward earlier

peak snowmelt runoff have been found in the western

US during 1948–2002 (Stewart et al., 2005) and earlier ice

breakup on lakes and rivers across the northern hemi-

sphere has been observed during 1846–1995 (Magnuson

et al., 2000). Trends towards earlier spring have been

found during 1951–2000 for agrometeorological indices

in the western US (Feng & Hu, 2004); 1954–1994 for lilac

and honeysuckle phenology in the western US (Cayan

et al., 2001); and 1959–1993 for last�2.2 1C frost date and

for SI-modeled first leaf and first bloom (Schwartz &

Reiter, 2000). However, results from experimental

warming suggest that plants which develop later in

the summer may be less likely to respond to climate

change by advancing their phenology or may even

show trends toward later phenology (Sherry et al.,

2007).

Satellite SOS trend estimates are limited by a short

record (Myneni et al., 1997) and are thus often incom-

parable with longer, climatically driven analyses. We

note, however, that measured and remotely sensed

estimates for North America both suggest a trend

towards earlier spring until the early 1990s followed

by a step change to later spring around 1993 – a change

that is largely consistent with approximately 0.5 1C

decreases in post-1993 December to May temperatures

for most of North America except the desert southwest

(Figure S2). Other studies have shown trend reversals in

measured phenology consistent with seasonal tempera-

ture variations or changes in synoptic pressure systems

(Scheifinger et al., 2002; Schaber & Badeck, 2005).

Conclusions

We conducted an intercomparison, interpretation, and

assessment of 10 SOS methods for North America from

1982 to 2006. We demonstrate that SOS estimates vary

extensively within and among methods and that inde-

pendent of other ecosystem information, selecting the

strongest method or calculating ensemble methods

would be difficult. Based on relationships with inde-

pendent measures of cryospheric interannual variabil-

ity and measured and modeled plant phenology, we

identify two SOS methods most consistent with cur-

rently available corroborating data.

Trend estimates from the SOS methods as well as

measured and modeled plant phenology strongly sug-

gest either no or very geographically limited trends

towards earlier spring arrival, although we caution that,

for an event such as SOS with high interannual varia-

bility, a 25-year SOS record is short for detecting robust

trends. Increased greenhouse warming since the late

20th century would seem to argue for increased, not

decreased, shifts in spring during our study period,

indicating that processes such as succession, changes in

community structure, land management, or disturbance

may be more important than previously recognized.

Seasonal temperature changes may also be linked to a

trend reversal in SOS in the early 1990s.

Our results highlight both the challenge and potential

for integrating remote sensing and ground observa-

tions. No other technology besides remote sensing

offers wall-to-wall coverage and consistent long-term

monitoring, yet few metrics of biospheric response are

as unconstrained by appropriate ground data – our

study clearly outlines the limitations in using existing

historical datasets. Establishing consistent plant phenol-

ogy monitoring networks (e.g. the USA National Phe-

nology Network, http://www.usanpn.org, (Betancourt

et al., 2007), or the European Phenology Network) as

well as incorporating a broader consideration of non-

climatic factors influencing SOS estimates is therefore

critical. A specific suggestion is to integrate SOS esti-

mates with ground measurements of first leaf (to which

SOS estimates from the two selected methods are most

related) in a geographically focused area with broad

correspondence among cryospheric/hydrologic metrics

and phenology, such as the Hudson Plain ecoregion. A

focused approach would also permit assessment of

within-ecoregion variability, which was beyond the

scope of the current analysis. Similar analyses and

study selections could be replicated on other continents

to produce a network of phenological monitoring ecor-

egions.

Acknowledgements

We gratefully acknowledge agency support: MAW, NASA grants
NNG04G043G and NNA05CS25A and NSF grant 02-4277; DDB,
the Office of Science (BER), US DOE grant DE-FG02-06ER64308
and NSF grant DEB 0639235; MDS, NSF grants ATM-9510342,
9809460, and 0085224; ADR, the Northeastern States Research
Cooperative and the U.S. Department of Energy’s Office of
Science (BER) through the Northeastern Regional Center of the
National Institute for Climatic Change Research. We thank
Samuel Hiatt for technical assistance. Logistical support and/
or data were provided by the Niwot Ridge Long-Term Ecological

20 M . A . W H I T E et al.

r 2009 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2009.01910.x



Research (LTER) project and the Mountain Research Station (BIR
9115097). Data was supported by the NSF LTER Program at
Konza Prairie Biological Station. Data sets were provided by the
Arctic LTER. This material is based upon work supported by the
National Science Foundation under Grants DEB 981022, 9211775,
8702328; OPP-9911278, 9911681, 9732281, 9615411, 9615563,
9615942, 9615949, 9400722, 9415411, 9318529; BSR 9019055,
8806635, 8507493. Data sets were provided by the Forest Science
Data Bank, a partnership between the Department of Forest
Science, Oregon State University, and the U.S. Forest Service
Pacific Northwest Research Station, Corvallis, Oregon. Signifi-
cant funding for collection of these data was provided by the
National Science Foundation LTER program (NSF Grant num-
bers BSR 9011663 8811906 0423662; DEB 9632921, 0217631,
9411976, 0080529 and 0217774). Data sets were provided by the
Shortgrass Steppe LTER group, a partnership between Colorado
State University, United States Department of Agriculture, Agri-
cultural Research Service, and the U.S. Forest Service Pawnee
National Grassland. Data sets were provided by the Shortgrass
Steppe LTER group, a partnership between Colorado State
University, United States Department of Agriculture, Agricultur-
al Research Service, and the U.S. Forest Service Pawnee National
Grassland. Data sets were provided by the Sevilleta LTER
program.

References

Angert A, Biraud S, Bonfils C et al. (2005) Drier summers cancel

out the CO2 uptake enhancement induced by warmer springs.

Proceedings of the National Academy of Sciences of the United

States of America, 102, 10823–10827.

Armstrong RL, Brodzik MJ (2005) Northern Hemisphere EASE-

Grid weekly snow cover and sea ice extent version 3. (Digital media).

National Snow and Ice Data Center, Boulder, Co, USA.

Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating

absorbed photosynthetically active radiation and leaf area

index from spectral reflectance in wheat. Agronomy Journal,

76, 300–306.

Assel RA, Robertson DM (1995) Changes in winter air tempera-

tures near Lake-Michigan, 1851–1993, as determined from

regional Lake-Ice records. Limnology and Oceanography, 40,

165–176.

Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber

J, Sitch S (2004) Responses of spring phenology to climate

change. New Phytologist, 162, 295–309.

Baldocchi D, Falge E, Gu LH et al. (2001) FLUXNET: a new tool to

study the temporal and spatial variability of ecosystem-

scale carbon dioxide, water vapor, and energy flux

densities. Bulletin of the American Meteorological Society, 82,

2415–2434.

Baldocchi DD, Black TA, Curtis PS et al. (2005) Predicting the

onset of net carbon uptake by deciduous forests with soil

temperature and climate data: a synthesis of FLUXNET data.

International Journal of Biometeorology, 49, 377–387.

Betancourt J, Schwartz M, Breshears D et al. (2007) Evolving

plans for the USA National Phenology Network. EOS, 88, 211.

Bradley BA, Mustard JF (2008) Comparison of phenology trends

by land cover class: a case study in the Great Basin, USA.

Global Change Biology, 14, 334–346.

Bunn AG, Goetz SJ (2006) Trends in satellite-observed circum-

polar photosynthetic activity from 1982 to 2003: the influence

of seasonality, cover type, and vegetation density. Earth Inter-

actions, 10, doi: 10.1175/EI190.1.

Cayan D, Kammerdiener S, Dettinger M, Caprio J, Peterson D

(2001) Changes in the onset of spring in the western United

States. Bulletin of the American Meteorological Society, 82, 399–

415.

Chmielewski FM, Rotzer T (2001) Response of tree phenology to

climate change across Europe. Agricultural and Forest Meteor-

ology, 108, 101–112.

Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD

(2007) Shifting plant phenology in response to global change.

Trends in Ecology & Evolution, 22, 357–365.

de Beurs KM, Henebry GM (2008) Northern annular mode

effects on the land surface phenologies of Northern Eurasia.

Journal of Climate, 21, 4257–4279.

Delbart N, Kergoat L, Le Toan T, Lhermitte J, Picard G (2005)

Determination of phenological dates in boreal regions using

normalized difference water index. Remote Sensing of Environ-

ment, 97, 26–38.

Feng S, Hu Q (2004) Changes in agro-meteorological indicators

in the contiguous United States: 1951–2000. Theoretical and

Applied Climatology, 78, 247–264.

Fitzjarrald DR, Acevedo OC, Moore KE (2001) Climatic conse-

quences of leaf presence in the eastern United States. Journal of

Climate, 14, 598–614.

Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-

observed photosynthetic trends across boreal North America

associated with climate and fire disturbance. Proceedings of the

National Academy of Sciences of the United States of America, 102,

13521–13525.

Jakubauskas ME, Legates DR, Kastens JH (2001) Harmonic

analysis of time-series AVHRR NDVI data. Photogrammetric

Engineering and Remote Sensing, 67, 461–470.

Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger

DY, Smith ML (2007) Refining light-use efficiency calculations

for a deciduous forest canopy using simultaneous tower-based

carbon flux and radiometric measurements. Agricultural and

Forest Meteorology, 143, 64–79.

Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Soranno

PA, Stewart KM (2007) Spatial analysis of ice phenology trends

across the Laurentian Great Lakes region during a recent

warming period. Limnology and Oceanography, 52, 2013–2026.

Jönsson P, Eklundh L (2002) Seasonality extraction by function

fitting to time-series of satellite sensor data. IEEE Transactions

on Geoscience and Remote Sensing, 40, 1824–1832.

Jönsson P, Eklundh L (2004) TIMESAT – a program for analyzing

time-series of satellite sensor data. Computers & Geosciences, 30,

833–845.

Kimball JS, McDonald KC, Zhao M (2006) Terrestrial vegetation

productivity in the western arctic observed from satellite

microwave and optical remote sensing. Earth Interactions, 10,

doi: 10.1175/EI187.1.

Kogan FN, Zhu X (2001) Evolution of long-term errors in NDVI

time series: 1985–1999. In: Calibration and Characterization of

Satellite Sensors and Accuracy of Derived Physical Parameters, Vol.

28, pp. 149–153.

S P R I N G P H E N O L O G Y I N N O R T H A M E R I C A 21

r 2009 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2009.01910.x



Landwehr JM, Slack JR (1992) Hydro-Climatic Data Network

(HCDN): Streamflow Data Set, 1874–1988. Report 93-4076, US

Geological Survey, Reston, VA, USA, Digital media.

Leemans R, Cramer W (1991) The IIASA database for mean monthly

values of temperature, precipitation and cloudiness on a global

terrestrial grid. RR-91-18, International Institute for Applied

Systems Analysis, Laxenburg, Austria, 61 pp.

Linderholm HW (2006) Growing season changes in the last

century. Agricultural and Forest Meteorology, 137, 1–14.
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Appendix A

Satellite SOS estimates

SOS category 1: global thresholds

In this simplest of methods, SOS is determined as the

DOY that NDVI crosses a threshold in the upward

direction where the same threshold is used globally,

i.e. for every pixel. To determine at which DOY the

threshold is reached, the time series is interpolated to a

daily dataset. In this study we have used threshold

levels of 0.2 and 0.3 with no filtering or smoothing of

input NDVI time series and term the methods NDVI 0.2

and NDVI 0.3.

SOS category 2: local thresholds

Instead of a global threshold, a locally tuned NDVI

threshold is used (White et al., 1997) wherein the state of

the ecosystem is indexed by transforming the NDVI to a

0 to 1 NDVIratio as

NDVIratio ¼
NDVI �NDVImin

NDVImax �NDVImin
; ð1Þ

where NDVI is the daily NDVI and NDVImax and

NDVImin are the annual maximum and minimum of

the NDVI curve. SOS is defined as the DOY when 0.5

NDVIratio is exceeded (note that an absolute rather than

relative threshold may be used as simply the midpoint

between the minimum and maximum NDVI). The 0.5 is

designed to correspond to the timing of maximum

NDVI increase; some evidence suggests that this corre-

sponds to the initial leafing of the overstory canopy

(White et al., 2000). Here three variations on this method

have been applied: Midpointpixel, Midpointcluster, and

PAT. For Midpointpixel, we set SOS to missing if any of

the following occurred: more than 10% of observations

were missing from the total 25 year time series; for any

year, at least one observation was missing from compo-

site periods 1, 2, 11, 12, 13, 14, 23, or 24 (determined to

be critical for the detection of NDVImax and NDVImin);

more than three observations were missing during a

year. For all the other pixels, we used a cubic smoothing

spline to interpolate the composited data to a 0.5-day

resolution and calculated NDVImax and NDVImin by a 7-

day moving average. In the case of multiple solutions

for SOS (e.g. a nonbell-shaped curve), we determined

SOS as the earliest day with the increasing rate.

For Midpointcluster, we initially clustered pixels into

homogenous clusters (White et al., 2005) with similar

biological and physical characteristics, as defined by

land cover (Loveland et al., 2000), monthly temperature

and precipitation (Leemans & Cramer, 1991), and GTO-

PO30 elevation binned to 500 m increments. Within

each cluster we averaged NDVI for each composite

period and used the midpoint approach where the

SOS threshold was defined as the half-maximum

NDVI � an error threshold (NDVI 0.025 for vegetation

with maximum NDVI o0.5, otherwise 0.05). For Mid-

pointcluster we did not estimate SOS if maximum NDVI

was o0.1 and determined SOS DOY as the SOS com-

posite period multiplied by 15 (average composite

period length).

We also used a variant of the Midpoint technique

called percent-above-threshold [PAT, (White & Nemani,

2006)] in which the behavior of a group of pixels within
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a level 3 ecoregion (Fig. S1) is tracked. In PAT, SOS is

defined as the date at which 50% of pixels within an

ecoregion have exceeded the median ecoregion mid-

point NDVI (similar to 0.5 NDVIratio but defined as an

absolute NDVI). We defined PAT SOS only for those

ecoregions in which only a single SOS was defined in

each of the 25 study years.

SOS category 3: conceptual-mathematical

Here, an assumption is made that a particular math-

ematical function or suite of functions may be used to

represent phenological development. We used two

groups of conceptual mathematical models: smoothing

methods and model fit methods.

For the smoothing methods, we first determined SOS

with the delayed moving average method (DMA, (Reed

et al., 1994)), in which SOS is the DOY at which a

smoothed NDVI time series crosses a curve established

from moving average models with an introduced time

lag of fifteen composites, i.e. SOS occurs when the true

NDVI exceeds the predicted NDVI of the prior compo-

site periods.

Second, in the HANTS-FFT method, we used the

HANTS-FFT algorithm (Roerink et al., 2000) to itera-

tively fit a series of frequencies to the NDVI profile

(mean, yearly and half-yearly cycle) with the returned

fast Fourier transform (FFT) coefficients then used to

reconstruct the NDVI profile on a daily basis [recon-

struction quality usually increasing with the number of

component sinusoidal waves (Jakubauskas et al., 2001;

Wagenseil & Samimi, 2006)]. SOS is derived as the point

of maximum increase on the NDVI profile. Although

the HANTS algorithm is robust, the estimation of SOS

indicators may become unstable when there is no dis-

tinct phenological cycle and dual growing seasons are

not detectable in the version of the algorithm used here.

For the model fit methods, we first used the Quad-

ratic method (de Beurs & Henebry, 2008) and a model of

the form

NDVI ¼ aþ bAGDDþ gAGDD2; ð2Þ

where AGDD are the accumulated growing degree-

days in 1C calculated from the North American Regio-

nal Reanalysis (Mesinger et al., 2006). We applied an

exhaustive search algorithm that fits every pixel time

series with multiple seasonal windows of differing

length and starting period (best fits usually obtained if

only the warm season data – usually April to October

but variable by pixel – were used and preceding com-

posites with low and static NDVI were excluded). The

Quadratic method estimates SOS for each pixel-year as

the first composite period of the best fitting model.

Second, in the Timesat method (Jönsson & Eklundh,

2004), we used a model fit consisting of a number of

local model functions merged into a global function,

thus allowing the fitted function to follow the behavior

of the time series (not possible with a simple Gaussian

model or lower order Fourier transform (Jönsson &

Eklundh, 2002)). In this Timesat implementation, we

used a local quadratic polynomial fit and the adaptive

Savitzky-Golay filter applied to a moving window size

of seven composites. We eliminated NDVI spikes larger

than two times the standard deviation of the median

values of the closest neighbors in the time series and

fitted the remaining upper envelope. SOS is defined

from the global model as the interpolated composite

period when the NDVI has increased 20% of the seaso-

nal amplitude from the growing season minimum level.

Although the threshold level can be adjusted, the 20%

threshold has been used effectively (Jönsson & Ek-

lundh, 2002; van Leeuwen, 2008). We estimated SOS

DOY values by the interpolated composite period multi-

plied by 15 days.

SOS category 4: hybrid

In the Gaussian method (closely related to an earlier

Weibull curve approach, (Myneni et al., 1997)), which

we applied at the level 3 ecoregion level (Fig. S1) as

opposed to pixel by pixel (as for PAT), we first calcu-

lated the mean NDVI for each ecoregion for each

composite period. In the next step, we fitted a Gaussian

curve to the composites from April 1 until October 31

with SOS determined as the average DOY when the

fitted NDVI curve reached 0.30, 0.35 and 0.40 (SOS not

determined if the samples contain missing data or if the

maximum value of the composites is o0.4). The Gaus-

sian method is thus a hybrid of a conceptual mathema-

tical model and a global threshold model.

Cryospheric/hydrologic comparisons

Snow

We used the 1982–2006 Northern Hemisphere weekly

snow cover version 3 product from the National Snow

and Ice Data Center [NSIDC, based on visual interpre-

tations of multiple satellite inputs (Armstrong & Brod-

zik, 2005)]. For each week and ecoregion, we calculated

the percent snow free (including NSIDC classes: snow,

quality control snow, ice, quality control ice but domi-

nated by variability in snow) and then selected only

those ecoregions in which the percent snow free fell

below 20% and rose above 80% in all years. For each

year, we subsetted a vector from January 1 to the DOY at
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which percent snow free exceeded 95% of the annual

maximum (95% used because of frequent long plateaus

slightly o100%) and then calculated a normalized

cumulative distribution function (CDF) such that Jan-

uary 1 was 0 and the date of 95% snow free was 1. We

extracted the dates of initial, midway, and complete

snowmelt (0.05, 0.5, and 0.95 on the normalized CDF).

Soil thaw

We used 1988–2005 estimates of the date of spring

thaw from 19-GHz brightness temperatures recorded

by the Special Sensor Microwave/Imager (SSM/I) on

both the 06:00 and 18:00 hours equatorial crossing

satellites. We compared both the am and pm products;

we present results from the am estimates only, for

which we found correlations to be consistently higher.

Full details are available (Kimball et al., 2006) but the

method relies on detecting a step change in the land-

scape dielectric constant as water changes from a frozen

to liquid state, with concomitant increases in brightness

temperature. The method is functional only in high

latitude areas undergoing hard winter freezes.

Lake ice dynamics

We used 1982–2004 maps of ice breakup date created

from ground-based observations on 65 water bodies in

Minnesota, Wisconsin, Michigan, Ontario, and New

York (Jensen et al., 2007). We projected water body

locations and removed first order spatial (x and y)

trends before variogram fitting (spherical model) and

kriging (ArcView v8.3, Geostatistical Analyst Exten-

sion). The spatial extent of predictions was limited to

the x and y extent of the observations and we made no

predictions greater than 200 km from the nearest break-

up date observation. Five lakes did not freeze in 2002,

and one did not freeze in 1998; for these lakes and years,

we used an existing method and inferred a breakup

date by taking the average midpoint between the freeze

and breakup dates of the five winters with the shortest

ice durations (Assel & Robertson, 1995).

Spring hydrology

We used 1982 to 2006 indicators of spring hydrology

calculated for 1149 stream gages in the US Geological

Survey Hydroclimatic Data Network (locations be-

lieved to measure flows that are largely devoid of

upstream diversions, reservoirs, and land use changes

(Landwehr & Slack, 1992). We calculated the spring

snowmelt onset date as the DOY when a snow-fed

stream begins its rapid rise – defined as the day when

the cumulative departure from annual mean flow is

minimum – associated with the onset of major snow-

melt (Cayan et al., 2001) (calculated only for stream

gages that are reliably snow-fed, as defined by expert

judgment). We also calculated the center of flow timing

as the ‘center of mass’ of the hydrograph for each gage

each water year. The center of flow is approximately,

but not exactly, the date by which half the annual flow

has passed and is described in more detail elsewhere

(Stewart et al., 2004, 2005). Although both indices are

designed to isolate temperature influences, precipita-

tion timing may influence some records, especially in

non-mountainous regions. We restricted our analyses to

those ecoregions with at least 10 stream gages.

Modeled plant phenology

First, we used the Spring Indices (SI) model

(Schwartz, 1997, 2003), which incorporates data from

about 190 sites recording lilac (Syringa chinensis) and

honeysuckle (Lonicera tatarica, L. korolkowii) phenology

in the northeastern US. A step-wise multiple regression

model combines the phenology observation with cli-

matic indices (such as accumulation of winter chill and

heat accumulation) to predict, among other events, first

leaf and first bloom. Second, we used a model based on

eddy covariance measurements of CO2 exchange re-

corded at 12 deciduous forest sites from 361N to 531N.

The model assumes that the start of spring (Dleaf-out)

occurs at the onset of canopy photosynthesis when

daily net CO2 exchange transcends from the winter

respiration phase to the spring/summer assimilation

phase (Baldocchi et al., 2005). Conceptually, Dleaf-out

occurs when mean daily soil temperature equals and

then surpasses the mean annual air temperature and

may be calculated (Baldocchi et al., 2005) using air

temperature alone:

Dleaf-out ¼ 169:3� 4:84
�mean annual air temperature: ð4Þ

Since trees are unable to sense the mean annual air

temperature a priori, we estimated mean annual tem-

perature with a 2-year running mean. For both models,

we used meteorological inputs from 1982 to 2003 1 km

conterminous US Daymet records of gridded daily

maximum, minimum, and average temperatures

(Thornton et al., 1997). As both models were developed

using data from temperate deciduous species, we re-

stricted the model comparison with the Eastern Tempe-

rate Forest ecoregion.
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